合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 應(yīng)用熒光顯微鏡研究了蛋白質(zhì)在氣-水界面的組裝——結(jié)論、致謝!
> 鋁酸鑭基片上沉積制備納尺度的銅薄膜,超微量天平精準(zhǔn)測(cè)量沉積質(zhì)量
> 4種油醇烷氧基化物平衡和動(dòng)態(tài)表面張力、潤濕性、泡沫性、乳化性質(zhì)研究(二)
> 磁場(chǎng)強(qiáng)度和磁化時(shí)長對(duì)除草劑溶液表面張力、噴霧霧滴粒徑的影響(三)
> 揭示界面張力在鈣鈦礦晶體生長過程中作用機(jī)理
> 涂料配方設(shè)計(jì)如何選擇潤濕劑?表面張力成為重要決定因素之一
> 磺酸基團(tuán)修飾水滑石LB復(fù)合薄膜自組裝機(jī)理及酸致變色特性(二)
> 煤油的界面張力多少合適,煤油表面張力與溫度對(duì)照表
> 釕催化劑合成丁炔二醇醚三硅氧烷表面活性劑反應(yīng)條件及表面張力測(cè)定(二)
> 環(huán)保非水基鉆井液界面張力、基本性能和抗污染能力——前言、實(shí)驗(yàn)部分
推薦新聞Info
-
> 十二胺功能化石墨烯量子點(diǎn)的制備、表面張力及對(duì)L-薄荷醇的緩釋作用(三)
> 十二胺功能化石墨烯量子點(diǎn)的制備、表面張力及對(duì)L-薄荷醇的緩釋作用(二)
> 十二胺功能化石墨烯量子點(diǎn)的制備、表面張力及對(duì)L-薄荷醇的緩釋作用(一)
> 超微量天平比普通電子天平“好”在哪?
> 界面張力儀評(píng)估氨基化氧化石墨烯-脂肪酸共吸附機(jī)制、應(yīng)用潛力(四)
> 界面張力儀評(píng)估氨基化氧化石墨烯-脂肪酸共吸附機(jī)制、應(yīng)用潛力(三)
> 界面張力儀評(píng)估氨基化氧化石墨烯-脂肪酸共吸附機(jī)制、應(yīng)用潛力(二)
> 界面張力儀評(píng)估氨基化氧化石墨烯-脂肪酸共吸附機(jī)制、應(yīng)用潛力(一)
> LB膜分析儀證明SP-B在肺表面活性物質(zhì)三維結(jié)構(gòu)形成中的關(guān)鍵作用
> 新型多功能解堵體系-單相酸體系乳化、界面張力測(cè)定及現(xiàn)場(chǎng)應(yīng)用效果(二)
溫度及壓強(qiáng)對(duì)CO2-NaCl鹽水系統(tǒng)界面張力的影響(一)
來源:化工學(xué)報(bào) 瀏覽 613 次 發(fā)布時(shí)間:2025-05-13
在超臨界態(tài)CO2封存于深部鹽水層過程中,溫度、壓強(qiáng)等控制條件是影響封存效率和封存量的重要因素。應(yīng)用分子動(dòng)力學(xué)模擬的方法對(duì)343~373 K和6~35 MPa范圍內(nèi)的CO2-NaCl鹽水系統(tǒng)進(jìn)行了界面張力(IFT)及界面特性的研究,分析了IFT隨溫度及壓強(qiáng)的變化關(guān)系,并觀測(cè)到了壓力平衡點(diǎn)pplateau;從分子尺度(物質(zhì)密度、界面過余量、界面水合物密度)分析了IFT隨壓強(qiáng)、溫度的變化,以及pplateau產(chǎn)生的原因。結(jié)果表明,pplateau前壓強(qiáng)升高或溫度降低將導(dǎo)致CO2密度升高,IFT下降,而pplateau后IFT趨于穩(wěn)定且受溫度影響較小;CO2的界面過余量及界面處水合物數(shù)量隨壓強(qiáng)及溫度變化,與IFT的變化相反;高壓下界面水合物密度的飽和現(xiàn)象可能是pplateau產(chǎn)生的重要原因。
引言
深部鹽水層CO2地質(zhì)封存所需的注射能耗及最大地質(zhì)埋存深度與CO2-鹽水之間的界面張力(interfacial tension,IFT)直接相關(guān),并受溫度和壓強(qiáng)的制約。開展溫度、壓強(qiáng)對(duì)CO2-鹽水間界面張力的影響研究,不僅可以分析IFT隨溫度、壓強(qiáng)等控制參數(shù)的變化規(guī)律,還能闡述溫度、壓強(qiáng)對(duì)IFT產(chǎn)生影響的內(nèi)在機(jī)理進(jìn)而對(duì)指導(dǎo)不同環(huán)境條件(溫度、壓強(qiáng))下的CO2地質(zhì)封存設(shè)計(jì),提高注射安全性及存儲(chǔ)容量具有重大意義。
目前實(shí)驗(yàn)已測(cè)定相關(guān)儲(chǔ)層條件下CO2-水和CO2-鹽水系統(tǒng)的IFT值,并觀測(cè)到IFT在定溫條件下會(huì)隨著壓強(qiáng)升高而降低,并在壓力平衡點(diǎn)pplateau之后趨于穩(wěn)定值。實(shí)驗(yàn)還發(fā)現(xiàn)pplateau的大小與鹽的種類及鹽度無明顯聯(lián)系,僅隨溫度升高而上升。Chalbaud等將pplateau的存在歸因于CO2溶解度的影響,但尚未展開深入分析。
分子動(dòng)力學(xué)模擬(molecular dynamics simulation,MD模擬)可以研究多相界面系統(tǒng)的微觀特性,目前該方法已成功模擬了CO2-水及CO2-鹽水系統(tǒng),可獲得與實(shí)驗(yàn)一致的IFT值,并能觀測(cè)界面的微觀現(xiàn)象,是一種有效的研究手段。
本文應(yīng)用MD模擬方法,對(duì)343~373 K和6~35 MPa范圍內(nèi)的CO2-NaCl系統(tǒng)進(jìn)行計(jì)算,分析了體相及界面各物質(zhì)性質(zhì)隨環(huán)境條件的變化規(guī)律,包括CO2的密度、CO2的界面過余量、界面處CO2水合物數(shù)量等,探討了IFT對(duì)溫度及壓強(qiáng)依賴關(guān)系的物理機(jī)理,尤其對(duì)pplateau現(xiàn)象的產(chǎn)生原因進(jìn)行了分析,可為IFT的控制和預(yù)測(cè)提供理論依據(jù)。
1研究對(duì)象及方法
1.1對(duì)象及模型
本文根據(jù)Chalbaud等對(duì)CO2-NaCl系統(tǒng)大范圍溫度及壓強(qiáng)下的IFT實(shí)驗(yàn)研究結(jié)果,選擇了溫度及壓強(qiáng)范圍為343~373 K和6~35 MPa的CO2-NaCl系統(tǒng)為研究對(duì)象。具體工況參數(shù)列于表1。
表1 CO2-NaCl系統(tǒng)的溫度和壓強(qiáng)條件
在計(jì)算過程中,綜合考慮了系統(tǒng)內(nèi)分子間非鍵結(jié)作用力(范德華力、庫倫靜電力)及分子內(nèi)鍵結(jié)作用力(鍵拉伸和鍵彎曲)。分別采用Lennard-Jones勢(shì)能函數(shù)模擬范德華力,庫侖定律模擬庫侖靜電力,具體分子間勢(shì)能函數(shù)如式(1)所示
其中,rij為原子i與j之間的距離;εij為勢(shì)能阱的深度,εij(εiiεjj)1/2;σij為兩體互相作用的勢(shì)能為零時(shí)的距離,σij(σiiσjj)1/2;ε0為真空介電常數(shù);qi及qj為原子i與j所帶電荷量。其中采用PME技術(shù)模擬分子間長程庫侖作用力,范德華作用截距設(shè)定為0.9 nm。此外,本文采用諧波勢(shì)能函數(shù)模擬鍵拉伸和鍵角彎曲等分子內(nèi)鍵結(jié)作用力。
圖1 CO2-NaCl系統(tǒng)平衡狀態(tài)
本文計(jì)算中,水分子選擇柔性F3C模型,CO2選擇柔性EPM2模型,鹽離子采用Chandrasekhar等開發(fā)的模型。應(yīng)用MD軟件Gromacs4.5并采用周期性邊界條件進(jìn)行計(jì)算,所建立的橫截面4 nm×4 nm的計(jì)算域示于圖1。計(jì)算域中間區(qū)域?yàn)辂}水,包括4323個(gè)水分子、147個(gè)Na+和147個(gè)Cl-,對(duì)應(yīng)鹽度為1.89 mol·L-1,兩側(cè)分別為732個(gè)CO2分子。利用Berendsen方法來實(shí)現(xiàn)溫度和壓強(qiáng)的設(shè)定。由于系統(tǒng)在NPzT系綜下20 ns達(dá)平衡態(tài),故模擬時(shí)間運(yùn)行30 ns,選取最后5 ns為有效數(shù)據(jù)進(jìn)行分析。





